翻訳と辞書
Words near each other
・ Laguna Niguel Regional Park
・ Laguna Niguel, California
・ Laguna Niguel/Mission Viejo station
・ Laguna Northwestern College
・ Laguna Palacios Formation
・ Laguna Park, Texas
・ Laguna Parrillar National Reserve
・ Laguna Phuket Triathlon
・ Laguna Provincial Board
・ Laguna Pueblo
・ Laguna Resources
・ Laguna Salada
・ Laguna Salada (Mexico)
・ Laguna Salada Fault
・ Laguna San Ignacio Airstrip
Laguerre–Pólya class
・ Lagueruela
・ Laguian-Mazous
・ Laguilayan, Sultan Kudarat
・ Laguindingan Airport
・ Laguindingan, Misamis Oriental
・ Laguinge-Restoue
・ Laguiole
・ Laguiole cheese
・ Laguiole knife
・ Laguja
・ Lagumot Harris
・ Laguna
・ Laguna (Madrid Metro)
・ Laguna (province)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Laguerre–Pólya class : ウィキペディア英語版
Laguerre–Pólya class
The Laguerre–Pólya class is the class of entire functions consisting of those functions which are locally the limit of a series of polynomials whose roots are all real.
〔("Approximation by entire functions belonging to the Laguerre–Pólya class" ) by D. Dryanov and Q. I. Rahman, ''Methods and Applications of Analysis" 6 (1) 1999, pp. 21–38.〕
Any function of Laguerre–Pólya class is also of Pólya class.
The product of two functions in the class is also in the class, so the class constitutes a monoid under the operation of function multiplication.
Some properties of a function E(z) in the Laguerre–Pólya class are:
*All roots are real.
*|E(x+iy)|=|E(x-iy)| for ''x'' and ''y'' real.
*|E(x+iy)| is a non-decreasing function of ''y'' for positive ''y''.
A function is of Laguerre–Pólya class if and only if three conditions are met:
*The roots are all real.
*The nonzero zeros ''zn'' satisfy
:\sum_n\frac converges, with zeros counted according to their multiplicity)
* The function can be expressed in the form of a Hadamard product
:z^m e^\prod_n \left(1-z/z_n\right)\exp(z/z_n)
with ''b'' and ''c'' real and ''c'' non-positive. (The non-negative integer ''m'' will be positive if ''E''(0)=0. Note that if the number of zeros is infinite one may have to define how to take the infinite product.)
==Examples==
Some examples are \sin(z), \cos(z), \exp(z), \exp(-z), \text\exp(-z^2).

On the other hand, \sinh(z), \cosh(z), \text \exp(z^2) are ''not'' in the Laguerre–Pólya class.
For example,
:\exp(-z^2)=\lim_(1-z^2/n)^n.
Cosine can be done in more than one way. Here is one series of polynomials having all real roots:
:\cos z=\lim_((1+iz/n)^n+(1-iz/n)^n)/2
And here is another:
:\cos z=\lim_\prod_^n \left(1-\frac)\pi)^2}\right)
This shows the buildup of the Hadamard product for cosine.
If we replace ''z''2 with ''z'', we have another function in the class:
:\cos \sqrt z=\lim_\prod_^n \left(1-\frac z)\pi)^2}\right)
Another example is the reciprocal gamma function 1/Γ(z). It is the limit of polynomials as follows:
:1/\Gamma(z)=\lim_\frac 1(1-(\ln n)z/n)^n\prod_^n(z+m).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Laguerre–Pólya class」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.